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FOREWORD

This report, in the field of Blast and Shock Biology, is the second in a
series describing experiments to determine the tolerance of animals to air
blast in relation to their geometry of exposure. Guinea pigs were exposed
to air blast while in shallow, deep, and deep-with-offset chambers on a shock
tube, and the lethality was correlated with the pressure "dose" measured
inside and outside the chambers.

The results apply only to the primary blast effect, to guinea pigs, and

to conditions of these experiments, and might not apply to the full-scale
s ituation.

This work is part of a broad research program aimed at a better under-
standing of human response to air blast and methods of protecting against
it.



ABSTRACT

One hundred and eighteen guinea pigs were exposed to air blast in
shallow, deep, and deep-with-offset chambers mounted on a shock tube.
The LD50-24 hours, in terms of the incident shock pressures measured
adjacent to the chambers, was calculated by probit analysis to be 34. 9 psi,
19. 5 psi, and 26.8 psi for animals in the shallow, deep, and deep-with-
offset chambers, respectively. According to the LD5 0 incident pres-
sures, the shallow chambers offered the most protection against air blast;
the deep chambers, the least.

Comparing the LD 5 0 -pressure "dose" at the animals' location re-
vealed little difference in their tolerance to overpressure, per se; i. e.,
LDS0 reflected pressures measured by gauges within the deep and deep-
with-offset chambers were 34. 6 psi and 35. 9 psi, respectively. The
LD50 incident shock pressure of 34. 9 psi in the shallow chambers was
considered to be the "dose" at the animal's location in that instance.

The protection against blast provided by the three chambers and the
response of animals to the particular pressure-time patterns encountered
are discussed.
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INTRODUCTION

Past studies indicate that biological response to air blast depends a
great deal upon the shape of the pressure-time curve, or wave form. 1-7
For convenience and classification, wave forms may be termed "ideal" and
"non-ideal" according to the nature of the initial portion of the pulse and the
character of the pressure decay. Ideal wave forms are characterized by a
near-instantaneous rise to maximal pressure followed by a decrease in
pressure which falls exponentially with time. Non-ideal pressure pulses rise
in a smooth manner, in steps, or -in combinations of these; peak pressures do
not occur at their leading edges and the character of the pressure fall may or
may ndt be exponential with time.

Ideal blast waves are recorded in the open (free field) at appropriate
ranges from high-explosive or nuclear detonations, and they can be produced
in shock tubes.

In many instances, non-ideal wave forms arise as modifications of ideal
blast waves when the latter enter structures or meet obstacles. Non-ideal
wave forms also may occur from a nuclear detonation in the free field as a
result of the interaction of a blast wave with a heat-absorbing surface. 8 They
also can be generated in appropriately modified shock tubes.

Considerable information indicates that biological response to ideal blast
waves depends upon the magnitude (peak) of the pressure and the duration of
the positive pulse. 8-1 5 On the other hand, relatively few data exist relating
biological tolerance to non-ideal blast waves. 1-7 All other factors being
equal, animals apparently can tolerate higher pressures applied in a smooth
manner or in two steps with a short time between the steps better than they
can tolerate pressures applied in a single, near-instantaneous rise.

The form that the blast wave takes after entering a structure is related,
among other things, to the volume of the structure, to the area and shape of
the opening, and to the orientation of the entrance to the incident wave. 16 Thus,
"geometric" scaling is needed to evaluate the pressure-time pattern charac-
teristics of structures of a given geometry as a function of the incident shock
wave in order that biological response may be related accurately to the proper
variations in environmental pressure.

Preliminary experiments are reported here in which animals were exposed
to air blast while in shallow, deep, and deep-with-offset chambers attached to
the side wall of a shock tube. The biological response (death) is related to
the incident shock pressures as well as to the pressure-time pulse recorded
within the chambers.



METHODS

Shock Tube

An air-driven shock tube generated the air blast (Figure i). The over-
all length of the tube was 76 ft 2 in. , the diameter of its circular cross
section was 23. 5 in. , and its walls were approximately 0. 5-in. thick. A
5-ft section of the tube constituted the compression chamber (driver section)
which was separated by Du Pont Mylar diaphragms from the 71-ft-2-in.
expansion chamber (driven section). A 3-ft-6-in. test section was 47 ft 8 in.
downstream from the diaphragm. There were 20 ft of tubing distal from the
test section. In these experiments, the end of the expansion chamber was
always open.

Test Section

The test section, with its four chamber-mounts, has been previously
described. 5 In the current experiments, as noted in Figure 2, the chambers
were arranged in three different geometries by using extensions and wooden
blocks: (1) shallow chambers - 3 x 8 x 2. 5 in. (approximately one animal-
diameter deep); (2) deep chambers - 3 x 8 x 8 in. (approximately three
animal-diameters deep); (3) deep chambers with offsets - 3 x 8 x 8 in. with
a 3 x 8 x 2. 5-in. "offset" oriented parallel to the long axis of the chamber.
Each chamber was always placed end-on with respect to the incident shock
front.

The shallow chambers were in positions "a" and "c"; the deep cham-
bers in "a, " "b, " "c," or "d"; and the deep chambers with offsets in "b" and
"d. "

Animals

A total of 118 guinea pigs of both sexes (average body weight, 528 gm)
were used in these experiments. Forty animals were exposed in the shallow
chambers, 38 in the deep chambers, and 40 in the deep-with-offset chambers.
Four animals, each in a single test chamber, were exposed tail-on to the
incident shock during each test. Animals that survived were sacrificed with
Nembutal and autopsied at 24 hours; therefore, the data reported herein repre-
sent 24-hofar lethality.

Pressure Gauges

Piezo-electric gauges (Model S-24c) containing Lead Metaniobate sensing
elements were used to measure pressure-time variation. The frequency
response of the gauges was greater than 200 kcps. Signals from the gauges
were fed through cathode followers* into Tektronix oscilloscopes (Model
535A) having Type L or Type 53/54C preamplifier plug-in units. Permanent
pressure-time records were taken by photographing the sweep on the face of
the cathode tube of the oscilloscope with a Polaroid Land camera. Gauges
were calibrated with a piezo-electric gauge calibrator. 17

*Susquehanna Instruments, Bel Air, Md.
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CROSS SECTION OF THE TEST SECTION
AT THE CHAMBERS
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Deep Chamber
with Offset

Shallow Shallow
ChamberChamber

Animal Deep Chamber

d
Figure 2
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7

On every test, gauges were placed in the main body of the tube. Additional
gauges were located in the lateral wall of the deep chamber and in the bottom of
the deep-with-offset chamber when animals were exposed there. During many
of the trials, gauges were also mounted at various points in the upstream and
downstream walls of the chambers.
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RESULTS

Pressure-Time Recordings

Figures 3, 4, and 5 contain pressure-time records associated with the
shallow, deep, and deep-with-offset chambers. All illustrated records were
taken with animals in the chambers and with driver pressures of 120 psi.

Figure 3 shows that the incident shock wave was "flat-topped" -typical
of many waves produced in shock tubes. The duration of the "flat top" (the
time the pressure remained near the incident shock level) was about 4 msec.
The duration of the overpressure was about 40 - 42 msec (lower record,
Figure 3). Throughout these experiments, the pressure durations ranged
from approximately 40 msec to about 54 msec for low and high driver
pressures, respectively.

As noted in Figures 4 and 5, the reflected pressures were higher in the
deep and deep-with-offset chambers than in the incident shock wave. More-
over, the leading edge of the pressure curves in these chambers was altered
from the single step associated with the incident wave. The pressure-wave
forms varied at the downstream, lateral, and upstream walls of the same
chambers, and the times to peak pressure were the longest at the upstream
walls of the deep and deep-with-offset chambers.

Lethality Data

In Table 1, the 24-hour mortality is related to the incident shock pressures
for. each of the chambers and to the reflected pressures as measured within the
deep and deep-with-offset chambers. Probit analysis was the method used to
calculate the LD50's, regression line equations, and fiducial limits. 18 The
incident shock pressures were first related to the percent mortality. The
results of the probit analysis appearing in Figure 6 and Table 2 show that the
LD50 incident shock pressures and 95-percent confidence limits computed for
animals in shallow, deep, and deep-with-offset chambers were 34. 9 psi (33.4 -
47.8 psi), 19.5 psi (17.4-21.0 psi), and 26.8 psi (?4. 2-29.6 psi), respec-
tively. Each LD50 value was statistically different from the other two at the
95-percent confidence level.

The wide 95-percent confidence limit associated with the LD50 for animals
in the shallow chambers was probably due to a number of factors. Three will
be mentioned; namely, (1) the lack of data for the higher pressures, which in
this present study, was because of the difficulty in generating pressures above
30 - 35 psi using an open, air-driven shock tube, (2) the small number of
animals in each group, and (3) variability in the time of death which often
encompasses a lethality time greater than 24 hours, particularly for exposures
to the lower overpressures. Though these factors help explain why the data
at hand "say" that the 95-percent confidence limits for the LD50 range from
33.4 to 47.8 psi, it needs to be pointed out that the figures represent an
"artificial" situation. This is so because shock overpressures of between
45 and 50 psi will lethally injure 90 to 100 per cent of the guinea pigs with
methodical regularity.

It has been pointed out previously that records from pressure gauges

-6-
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PRESSURE-TIME RECORDS ASSOCIATED WITH
THE DEEP-WITH-OFFSET CHAMBER

C. -. - --- -

-4-

gauge a 0.5 msec/div gauge b 0.5 msec/div

In Oi
inm

gauge c 0.5 msec/div gauge d 0.5 msec/div

gauge c 

2-1/4'

Figure 5

-9-



TABLE I

THE RELATION BETWEEN MORTALITY AND OVERPRESSURE
FOR GUINEA PIGS IN THE VARIOUS CHAMBERS

Pressure, psi Mortality
Incident R~eflected Number Dead

Group Shock Maximum Total Percent

Shallow Chamber:

1 29.61 - 1/10 10.0
II 32.2 - 1/10 10.0

III 33.4 - 3/10 30.0
IV 35.0 - 6/10 60.0

Deep Chamber:

I 16.61 30.22 2/12 16.7
II 21.4 36.9 8/12 66.7

III 23.6 42.4 13/14 92.8

Deep Chamber with Offset:

I 21.81 29.83 1/10 10.0
II 23.6 33.0 3/10 30.0

III 31.0 41.5 8/10 80.0
IV 35.0 42.8 9/10 90.0

1Measured in the wall of the tube adjacent to the chambers (Fig. 3).
2Measured in the side wall of the chamber (see Fig. 4, Record c).
Measured in the floor of the chamber (see Fig. 5, Record c).
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TABLE 2

RESULTS OF THE PROBIT ANALYSIS RELATING
LETHALITY TO OVERPRESSURE

Number
Chamber of LD50, Probit Equation Constants
Geometry Animals psi intercept, a slope, b

Incident Shock: 2
Shallow 40 34.9 1 -30.856 23. 247±10.121

(33.4 - 47.8)

Deep 38 19.5 -14.276 14.950± 3.961
(17.4 - 21.0)

Deep-with-Offset 40 26.8 -12.247 12.080* 3.008
(24.2 - 29.6)

Reflected Maximum:

Deep 38 34.6 -20.303 16.435* 4.379
(31.5 - 37. 2)

Deep-with-Offset 40 35.9 -18.799 15.299* 3.760
(33.0 - 38, 8)

I 95-percent confidence limits.
2 Standard error of the slope constant.
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mounted as close to the animal's lung as possible best define the air-blast
"dose" received. 3 , 5, 6 In particular, for animals exposed in a geometry in
which reflections occur, the auge apparently should be at the downstream
margin of the animal's lung. f, 5 Consequently, the probit analysis was
applied to the mortality data in Table 1, and it related reflected shock
pressure to lethality for animals in the deep and deep-with-offset chambers.
Since the guinea pigs all but filled the shallow chambers, significant reflec-
tions did not occur; so the incident shock pressure was considered to be the
"dose" at the animal's location.

Figure 7 compares the probit regression lines relating lethality to the
maximal reflected pressures in the deep and deep-with-offset and to the
maximal incident pressures at the shallow chambers. The.LD5O's, in terms
of reflected pressure, were 34.6 psi (31.5 - 37.2 psi) and 35.9 psi (33.0 -
38.8 psi) for animals in the deep and deep-with-offset chambers, respec-
tively. These LD50 values were not significantly different from each other
nor were they different from the LD50 incident pressure of 34.9 psi (33.4-
47.8 psi) calculated for animals in the shallow chambers (Figure 7, Table 2).

-13-
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DISCUSSION

The results of this study can be discussed in relation to the protection
against air blast provided by the three chambers and the response of
animals to overpressure.

Protection Against Air Blast

The amount of protection against the shock wave afforded by the three
types of chambers can be evaluated by comparing the incident shock pressures
required to produce 50-percent lethality; by increasing order, they were 19.5
psi for the deep, 26. 8 psi for the deep-with-offset, and 34. 9 psi for the
shallow chambers. The shallow chambers offered the most protection; the
deep chambers, the least.

The protection gained by animals in the three structures may be illus-
trated in another way: According to the probit mortality curves in Figure 6,
with an incident shock of 25 psi, one could expect less than 5-percent survival
for animals in the deep chambers, about 65-percent survival in the deep
chambers with an offset, and nearly 100-percent survival in the shallow
chambers.

Analysis of the pressure-time recordings, as illustrated in Figures 4
and 5, revealed that the magnitude of the pressure in the incident shock
nearly doubled after entering the deep chambers because of reflection from
the downstream walls and the bottoms of those structures. Others have
reported that reflected pressures of about twice the incident shock can occur
in simple trenches. 19 The reader is referred to other studies for a more
detailed account of air-blast filling of open structures and tunnels. 16, 19-23

Tolerance to Overpressure

Comparing the LD50's, in terms of the pressure "dose" at the animals'
lungs, revealed little difference in tolerance to overpressure, per se. The
LD50 values were 34. 6-psi reflected pressure, 34. 9-psi incident pressure,
and 35. 9-psi reflected pressure for animals in the deep, shallow, and deep-
with-offset chambers, respectively.

It should be emphasized here, however, that even though the pressure
rose in a stepwise manner in the deep and deep-with-offset chambers, with
respective times to maximal pressures of near 0. 20 and 0. 18 msec (Table 1),
the LD50 values were not importantly different from those for guinea pigs
exposed to a near-instantaneous-rising pressure pulse in the shallow chamber.
The LD50's were also in agreement with those obtained for guinea pigs sub-
jected to sharp-rising pressures of 6 to 8-sec duration (LD50, 36.6 psi)4 ,
400-msec duration (LD50, 34.5 psi)2 4 , and 3 to 4-msec duration (LD50, 35. 2
psi) 2 5 when the animals were exposed in cages mounted against the end-plates
of shock tubes. Apparently, time intervals of 0. 20 msec or less for the rise-
times of the leading edges of the pressure pulses did not significantly alter
the guinea pigs' tolerance to overpressure from what it would be for near-
instantaneously rising pressures.

As mentioned earlier, a longer time to maximal pressure was recorded

-15-



by gauges in the upstream wall than by those near the downstream wall of the
deep chambers. It should follow then that if the animals were rotated from
the tail-on to the head-on position (thereby subjecting their lungs to a slower-
rising pressure pulse), there would be fewer deaths. Results from initial
trials indicated that was indeed true. For instance, the LD50 reflected
pressure for guinea pigs head-on in the deep chambers was calculated to be
47.4 psi compared with 34.6 psi for the animals oriented tail-on. The
pressure "dose" was taken from recordings made by gauges located in the
lateral wall about four inches from the downstream end of the chamber.
The time to peak pressure at that point was near 0.40 rnsec. An incident
shock of 25.5 psi was associated with the LD50 reflected pressure of 47.4
psi noted above.

These studies are being continued to determine the effect of varying
chamber as well as animal orientation and to establish the protection pro-
vided by chambers of other designs.

The important question raised by this study was whether or not the results
could be applied to large animals exposed to air blast in full-scale models
of the chambers employed here. The question cannot be answered at the
present time because of the uncertainties in predicting the magnitude of the
pressures in the full-scale models as a function of the incident shock. And,
more important, the tolerance of larger animals to overpressures that rise
in a stepwise manner as a function of the time to maximal pressure is not
known. Obviously, there is need for further laboratory work along with
appropriate field tests.

-16-



SUMMARY

1. A total of 118 guinea pigs were exposed to air blast while mounted in
chambers on a shock tube.

2. Three types of chambers were employed: shallow chambers that
measured 3 x 8 x 2.5 in. -approximately one animal-diameter deep;
deep chambers that were 3 x 8 x 8 in. - about three animal-diameters
deep; and deep chambers with an offset that were similar to the "deep"
except for a 3 x 8 x 2.5-in. "offset" parallel to the long axis of the
chamber.

3. The chambers were always oriented end-on to the incident shock wave;
the animals, tail-on.

4. Pressure-time measurements were taken with piezo-electric transducers
mounted in the main body of the shock tube and in the walls and bottoms
of the deep and deep-with-offset chambers.

5. The incident shock pressures required to produte 50-percent lethality
in the three chambers were calculated by probit analysis. For animals
in the chambers, the LD50-24 hours and 95-percent confidence limits
were as follows: shallow chambers, 34.9 psi (33.4-47.8 psi); deep
chambers, 19.5 psi (17.4-21.0 psi); and deep-with-offset chambers,
26.8 psi (24. 2- 29.6 psi). Each LDs0 value was statistically different
from the other two at the 95-percent confidence level.

6. Judging from the LD50. incident shock pressures, the shallow chambers
provided the most protection against air blast; the deep chambers, the
least.

7. The reflected pressures measured on the lateral walls and bottoms of
the deep and deep-with-offset chambers were about double the incident
shock pressures.

B. The LD50 reflected pressures for animals in the deep and deep-with-
offset chambers were calculated to be 34. 6 psi (33.4 - 37. 2 psi), and
35.9 psi (33. 0 - 38. 8 psi), respectively. These LDSO values were not
significantly different from one another nor from the LD50 of 34. 9-psi
incident shock pressure considered to be the "dose" at the animal's
location in the shallow chambers.

9. The protection provided against the air blast for animals in the different
chambers was discussed along with the biological response in terms of
the pressure-time pattern at the animal's location.

-17-
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